――――從研究邁向實用,見證35家日本先進企業如何成功應用「深度學習」――――
日本AI書籍第一人、東京大學松尾豐教授解說深度學習的發展預測
LINE、可口可樂、本田、樂天、NHK、So-net、佳能醫療系統……
第一手訪談先驅者的前瞻思考,掌握智慧化新技術的無限商機★深入導讀深度學習的發展:影像辨識、多模式辨識、機器人學、互動、符號接地、知識擷取!
★為運用AI技術的企業經常遇到的疑問提出解答,次世代新興事業、企業創造價值必讀教本!
★直擊AI計畫推動者的挑戰與艱辛,收錄大量照片和圖表,身歷其境感受快速擴展的深度學習應用的今日與未來!
【各界讚譽推薦】何英圻∣91APP董事長
呂曜志∣台北海洋科技大學副校長
陳良基∣科技部部長
郭奕伶∣商周集團執行長
張嘉惠∣中華民國人工智慧學會理事長
陶韻智∣德豐管顧公司合夥人、LINE台灣區前總經理
程世嘉∣iKala共同創辦人暨執行長
詹宏志∣PChomeOnline網路家庭董事長
楊立偉∣國立臺灣大學工商管理學系教授
盧希鵬∣國立臺灣科技大學資訊管理系專任特聘教授
謝宗震∣智庫驅動公司知識長
魏澤人∣國立交通大學AI學院副教授
蘇書平∣為你而讀執行長
█以AI為眼、為腦,實現五感預測,邁向高階思考溝通!扮演第三次人工智慧熱潮領頭羊角色的深度學習,正以銳不可擋之姿進化。做為人工智慧時代的通用技術,「深度學習」蘊藏著能夠改變一切產業中所有業務、創造新事業的潛力。本書不是探討深度學習技術的深奧知識,而是希望藉由多樣化的實際案例,找出靈活運用的「模式」。
豬排丼盛裝方式的判定、計算游動中的鮪魚數量、辨別送洗的衣類、文章的校閱、判斷河川護岸的損壞、輸電線的異常檢測、探測路面下的空洞、預測計程車的乘客人數、預估電視廣告的效果、便當的裝飾、黑白影像的上色技術、繪製虛擬偶像的圖像、跟專業人士一樣的主播、模仿卡通人物語音的智慧音箱……分門別類介紹深度學習的驚人運用法。
本書由專精市場行銷和創新的日本數位媒體「日經xTREND」編纂,長期關注企業最先進數位策略和新事業規畫的專業記者撰文。此外,人工智慧專家將解答企業在商業應用上經常面臨的問題,包括值得挑戰的領域、需要的人才、費用估算、成功活用的關鍵要素等。
或許不是每個人都會開發AI、都需要思考AI運用,但人人都是AI消費者、獲益者、享受者,也是受AI影響者。透過本書,見證人工智慧如何深入我們的生活,改變世界!
█從大企業到中小企業,從金融保險、零售流通、醫療保健、機械交通到文創媒體系統化歸納深度學習活用案例,找出高效運用的最佳模式!
01以影像辨識實現自動結帳的無人櫃臺,與人的合作比辨識準確率更重要
02用約七百台自行研發的人工智慧攝影機「實際A/B測試」
03日版「AmazonGo」的實驗,以人工智慧實現預防竊盜技術
04分析社群網站的圖像貼文,掌握消費情境
05大幅縮短製作估價單的時間,增加保險提案的「打數」
06以人工智慧將租賃物件照片自動分類,每個月減少三千小時的作業
07翻譯手語的小型機器人,設置於銀行櫃臺等窗口協助對話
08藉由智慧型手機圖像分析,計算食物熱量和判定體態
09使用亞馬遜的影像辨識API,將環境改善人工智慧服務事業化
10運用人工智慧掌握鮪魚養殖數量,每年減少超過兩百五十小時的作業
11福岡的乾洗店以五十萬日圓打造「人工智慧無人櫃臺」的原因
12校對人工智慧效果驚人,檢測率超過人類,只需幾秒即完成
13以人工智慧檢測河川護岸受損狀況,驗證公共基礎工程更有效的檢驗法
14運用於檢測輸電線異常,希望提升五倍生產力
15本田旗下汽車零件製造商,試作不良品自動偵測系統
16藉由一般人工智慧與優秀人工智慧結合,實現自動化檢查半導體晶圓外觀
17追蹤路面下空洞的變化,偵測塌陷危險性高的地點
18使用滿載保全警備專業技能的人工智慧來防止竊盜
19研發車用保護駕駛感測器,判定認知、判斷和操作狀況
20使用智慧型手機拍照,就能自動輸入上架商品類別和名稱
21菜鳥駕駛勝過經驗豐富的中堅員工!人工智慧計程車的威力
22以人工智慧預測人的移動並加以視覺化,布局近未來的交通系統
23學習約一萬支電視廣告影片,在播放前精準預測效果
24橫幅廣告點擊率高低的預測準確率,專家百分之五十三對人工智慧百分之七十
25日本國內醫療第一線首次實際使用運用深度學習的儀器
26以深度學習來讓機器人取出散裝零件
27老字號企業與新創公司合作,挑戰解開「夾取義大利麵」的難題
28實現油壓挖土機自動挖掘作業,輸入資料和人員作業一樣只靠影像
29從屬性識別到軌道生成的六項功能都適用人工智慧,朝自動駕駛邁進
30以人工智慧提升黑白影像彩色化的效率,五天的作業一日完成
31實現自動生成「偶像臉」,目標是創意人工智慧實用化
32超越亞馬遜Alexa的「人工智慧播報員」能流暢說話的原因
33Clova的「個性化」策略,以約四小時的語音資料來模擬說話方式
34實現電視劇字幕自動翻譯作業超越專業人員的品質
35讓機器人能理解情感,實現高階溝通
█對本書的讚譽
何英圻∣91APP董事長對零售對品牌來說,沒有「對的資料」,就沒有AI。唯有正確的資料,機器才能理解、學習。但是零售數據龐雜,線上線下數據異質性高,我看到許多品牌,光要打通線上線下資料,再進而資料可以正確一致,就面臨非常巨大挑戰。縱使有再強的AI算力、演算法,沒有對的資料,是做不到虛實融合(OMO),遑論AI帶來的龐大效益。如本書所提,AI並非萬能,要站在實際應用場景來設計,才會做出讓企業致勝的武器。現在距離不需要人的時代還很遙遠,要使用AI驅動企業競爭力,就要回到如何理解AI善用AI,這才是未來十年的重點,也是本書精髓。
呂曜志∣台北海洋科技大學副校長人工智慧應用科技的目的,事實上不是要取代人,而是要取代人的某些耗費心力的勞動與時間投入,使得人類從繁雜的勞動中被解放出來,從而投入更有創造性與決策性的心智活動。因此人工智慧在企業上的應用,其實是一種分層負責與決行的概念,讓所有能夠被清楚定義(WellDefined)與數量化,且不牽涉到動態競爭賽局的決策,賦權給人工智慧來處理過程中的決策資訊,而最後由人類來審核與拍板。
除了解釋決策者給予的問題之外,人工智慧的下一步,將是從大量結構性與非結構性的資料當中,看到決策者所看不到的問題。因此人工智慧對企業管理的未來,有如數位的斷層掃描儀,一層一層診斷與凸顯企業的問題。既然是診斷企業,就要有大量的臨床成功病例,這本書提供了三十五家日本各領域先進企業應用人工智慧、精進企業經營的實際案例,值得任何有志於探討企業管理議題的讀者參考。
程世嘉∣iKala共同創辦人暨執行長數位轉型從以往的數位化、IT升級階段,正式進入以AI為核心驅動的商業轉型階段。AI技術經過多年發展,已經快速商品化,變成人人可用。現在,一位不會寫程式的行銷人員,都能輕易上手AI工具,來改善工作流程和成效。iKala提供以AI為核心的商業轉型解決方案,在六個國家,服務超過三百五十間、橫跨超過十二種產業的企業客戶,親身參與AI在不同商業場景的落地和實踐。本書以場景分類出發,有條有理歸類不同企業使用深度學習技術改善商業流程的方式,諸多案例令人大開眼界,值得一讀。
謝宗震∣智庫驅動公司知識長本書彙整了大量人工智慧應用案例,透過訪談先驅者的第一手材料,理解人工智慧應用是如何在既有工作流程中進行顛覆式創新。譬如怎麼樣讓豬排丼看起來更美味、如何系統性偵測路面坑洞、如何實現挖土機自動挖掘作業。
在終章更整理了實務專家在商務運用的關鍵議題,包含場景、資料、人才、外援、預算。精讀本書有助於讀者建立有效的決策,創造有價值的應用,本人誠摯推薦。
魏澤人∣國立交通大學AI學院副教授在產業中應用深度學習技術,需要資料科學家、資料工程師、軟體工程師、使用者經驗、行銷等等不同領域的人才。要讓這麼多不同領域的專家合作和溝通,相當有挑戰。也許需要更多像書中所提的「左右開弓型」人才。本書中舉出許多AI在日本產業上的案例,很值得參考。
運用
計程車
深度學習
ALEXA
AI
辨識
企業
應用
資料
未來